If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+4x=64
We move all terms to the left:
8x^2+4x-(64)=0
a = 8; b = 4; c = -64;
Δ = b2-4ac
Δ = 42-4·8·(-64)
Δ = 2064
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2064}=\sqrt{16*129}=\sqrt{16}*\sqrt{129}=4\sqrt{129}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{129}}{2*8}=\frac{-4-4\sqrt{129}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{129}}{2*8}=\frac{-4+4\sqrt{129}}{16} $
| 0=(4x+5)(4x-5) | | 3x+12+5x-30=90 | | −2x+6=+4 | | 30=d/19 | | 9x-(8x+5)=2x-43 | | -7x=8-15 | | 3x−8=22 | | 1.5*y=30 | | √x-1=10 | | 2x+2(x+5)=(x+7)+(x+4)+(x+11) | | -4.9t2+50t+25=0 | | 11-x=-30 | | 4x^2+3=159 | | -4.9t^+50t+25=0 | | (5x)^2-2x=0 | | n+1/4=1/12 | | v−23v+34=32(v−54)v−23v+34=32(v−54) | | 1/2(n+-6)=8 | | 3x+22=-2 | | 3d+7d=-17 | | 1.2/4=n/3.5 | | 11m=-9 | | 2/3+2y=3 | | (c-15)*2=60 | | 1/2r+5-1/6r=21 | | 2/5x+1/5=2 | | 3(2x-5)+1=8 | | 7.5+30/x=1.2x+7.5 | | 9.2r+5.514=78.408 | | -11+y=3 | | 1/3x-2=1.6 | | 5=1/5e |